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We consider the mixed  a x i s y m m e t r i c  problem hav ing  boundary condi-  

tions of the l l I - rd  kind which are  specif ied at  the surface of a disk. By 
means  of a spec ia l  method we find the approx ima te  solut ion in a n a l y t -  
i ca l  form and we evaluate its accuracy. 

Let us consider the half-space z > O, on portions of 

whose boundary--limited by a circle of unit radius--the 

conditions of convective heat transfer are satisfied, 

with constant temperature maintained over the remain- 
ing portions of the boundary plane. In the ease of a 

homogeneous and isotropic medium, the determination 

of the temperature distribution in the half-space, as 

is well known, reduces to finding the harmonic func- 
tion O(r, z) for boundary conditions of the form* 

O - - k  O0 = 1  wr, o. z = 0 ,  r < l ,  (1) 
az 

0 = 0  w.~n z = O ,  r > l ,  (2) 

where  k = eonst > O. 
In a number  of p a p e r s  (for e x a m p l e ,  [1-3] )  this  

k ind  of p r o b l e m  is r e d u c e d  to the so lu t ion  of i n t e g r a l  
o r  i n t e g r o d i f f e r e n t i a l  equa t ions .  However ,  us ing  the 
r e s u l t s  ob ta ined  in these  p a p e r s ,  we can  f ind the so lu -  
t ion for  the p r o b l e m  only in n u m e r i c a I  t e r m s ,  which 
f r equen t ly  l i m i t s  the p o s s i b i l i t i e s  of i t s  i n t e r p r e t a t i o n  
to a c o n s i d e r a b l e  extent�9 Le t  us  t h e r e f o r e  c o n s i d e r  an 
a p p r o x i m a t e  method of so lv ing  the s t a t ed  p r o b l e m ;  
with th is  method  we wil l  be able  to d e r i v e  an ana ly t i c a l  
e x p r e s s i o n  for  the solut ion.  ** 

Le t  us  p r e s e n t  the  sought  function 0(r ,  z) in the fo rm 
of the sum of two funct ions  

0 = 0' + 0" 
for z = 0 satisfying the following boundary conditions : 

0 ' =  I D' r < c ,  (3) 
l O, r:>c, (4) 

0"=  f(r) = { - - D ,  1 . ~ r ~ c ,  (5) 
O, r > c ,  (6) 

00" =0,  r < l ,  (7) 
Oz 

w h e r e  D and c a r e  p a r a m e t e r s .  
I t  is  e a s y  to s e e  that  bounda ry  condi t ion  (2) is  s a t -  

i s f i ed  i d e n t i c a l l y  fo r  any va lues  of the p a r a m e t e r s  D 
and c. However ,  as  r e g a r d s  boundary  condi t ion  (1), 
we r e q u i r e  that  this  condi t ion  be s a t i s f i e d  exac t ly ,  at  
l e a s t  at two po in t s :  r = 0 and r = 1, i . e . ,  we d e t e r -  
mine  the p a r a m e t e r s  D and e f r o m  the s i m u l t a n e o u s  
so lu t ion  of the fol lowing two equat ions  : 

0"(0, O ) - - k  Oo'(O'O) I - - D ,  (8) 
c)z 

O O' (1, 0) (9) o"0, 0)--k----=I--D. 
Oz 

The problem of finding the functions 0 ' and 0" in- 
volves no basic difficulties. The solution of the first 
of these is known in this case (see, for example, [5]) 
and is given by the formula 

O = I - - D  .~ ~ .z :(r_}_c). H nl, v , + 

- -  , n~, ~ , (10)  
I I - - r  

w h e r e  

2 r  
a ~  3 Z 2-4-- r ~, n l  - -  

a + r  
2r 4cr 

a - -  r (r -}- c)2 q- z ~ 

The following special expressions are derived from 
the g e n e r a l  f o r m u l a  (10): 

O, ,r_0=D (1 z ) 
- z~ ~ , (11)  

08' 2D E ( i  ) 

Oz z=0 ~ C 1--  ~ 

. . . .  ~ . (13)  

The so lu t ion  for  the p r o b l e m  of f inding 0" wil l  be 
sought  in the f o r m  

9"(r, z) = y A(k )e -~Jo(kr )  dM (14) 
0 

Subst i tu t ion  of (14) into boundary  condi t ions  (5)-(7)  
l e a d s  to the fol lowing s y s t e m  of i n t e g r a l  equa t ions :  

~.A(~. )4(~r)d~=O,  r < l ,  (15) 

i A(MJo(Lr) d L = f ( r ) ,  r > l .  (16) 
0 

We wil l  p r e s e n t  the f u n c t i o n f ( r )  in the fo rm of the 
Hankel  i n t eg ra l ,  a s s u m i n g  t h a t f ( r )  = 0 when r < 1: 

*In "the f o r m u l a t i o n  and so lu t ion  of the p r o b l e m ,  for  
the sake  of g e n e r a l i t y ,  we wil l  use  d i m e n s i o n l e s s  
quan t i t i e s .  

**An a p p r o x i m a t e  so lu t ion  for  an analogous  p r o b -  
l em with r e v e r s e  spec i f i c a t i on  of the boundary  cond i -  
t ions has  been  d e r i v e d  in [4]. 
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where  

](r) = y xT(X)do(Xr )dz ,  (17) 
0 

f-(~') = i rSo(kr)f(r) dr. (18) 
0 

t lecal l ing (5) and (6), we have 

f(X) : - -D  rdo(kr) dr = ~ [J1 (~,) --cJt(3,c)]. (19) 

1 

With the aid of  (17) and (19), it is not difficult  to 
br ing s y s t e m  (15)-(16) to the f o r m  

i X B (~) J0 (k r) d X = fl (r), 
0 

.f B(X)lo(~.r)dX=O, 
0 

where  

r <1, (20) 

r >  I, (21) 

B($):: AQO--D[J~(~)--cJ~(Xc)], (22) 

fl(r) : D i ~ Jo(Xr) [CJl(LC)-- J~(L)] dL. (23) 
0 

The solution of s y s t e m  (20)-(21) is known [3] and is 
given by the fo rmula  

1 

B (X) = S q) (t) sin ~, t dt, (24) 
0 

where  
t 

2 ~ o h ( o )  dp (25) 
,p (t) = ~ j v t~"-~--~, -~ " 

0 

Having subst i tuted (23) into (25), having a l te red  the 
sequence  of integrat ion,  and using the fami l i a r  in tegral  
exp res s ions  of the Besse l  functions [6], we obtain 

~(t) 2Dt(__ 1 1 ) . (26) 
F C 2 -  t 2 V '  I - -  t z 

Using the in tegra l  r ep resen ta t ion  of the function 
JI(X), by means  of (22), (24), and (26) we find the so lu-  
t ion for  the s y s t e m  of pa i red  integral  equations (15)-  
(16) : 

1 

A (X) = 2/9~ ~ tvSinc ~-x tdtt, cDJ~ (~. c) (27) 

0 

thus s imul taneous ly  finding the solution to the p rob lem 
of de te rmin ing  the function 0" 

O"(r, z) = 
(28)  

2D f m f ] / . c 2 ~  exp (-- k z) Jo (L r) sin L td k -- 

0 0 

--cD ~" exp(-- ~,z) Jo(~.r) d1(kc) dX. 
0 

Simple t r ans fo rmat ions  and integrat ion yields the 
fo rmula  for  the function 0" at both the boundary  and the 
axis of s y m m e t r y  of the s y s t e m :  

z 2 + l  rt 

1 c ~-4- z * arctg (29) . z . i  c ~ l l  ' 

r<l c ~ r  2 �9 (30) 

F r o m  fo rmulas  (11), (12), (29), and (30) we have 
the express ions  for  the t e m p e r a t u r e  and its normal  
der iva t ive :  

6(0, z ) =  2 D [ a r c s i n ( + ) - -  

z arctg t c~-t-z 2 ] 
Ca+ Z ~ z t C a - - 1  * 

(31) 

O(r, O)lr<l = D ( l + l arcsin 2 - - c * - - r 2  c a - r  2 , (32)  

O0(r,oz 0)'r<t== O0'(r,oz 0) ~<t<~ [see (12)]. (33) 

P roceed ing  f r o m  (33) and (12), for  the o v e r - a l l  heat 
flow of the sy s t em we have 

0_ 2  r00 r0',r z 'OSc 
o 0 l - ( + )  

d r  = 

All of the above-der ived  fo rmulas  contain the p r e -  
viously  unknown p a r a m e t e r s  D and c which we de t e r -  
mine- -p roceed ing  f rom the sy s t em of equations (8)-(9) 
- -by substi tut ing (12) and (30) into that sy s t em when 
r = 0 and r = 1. By means  of appropr ia te  t r a n s f o r m a -  
tions we der ive  the re la t ionships  which assoc ia te  these 
p a r a m e t e r s  with the specif ied quantity k:  

~ c  1-- 1 + - - 1  arcsin 
k = z c~ ' , (35) 

1 k 1 2--c2h -1 
D =  - 2 - + - - c  + - ~  arcsin c 2 j . (36) 

It is not difficult to establish that 

t i m k = 0 ,  l i m D = [ ,  

limk---- ~ ,  l i m D = 0 .  

Thus,  the der ived approximate  solution is valid for  
any value of k E [0, oo). 

The curves  showing the var ia t ion  in the p a r a m e t e r s  
c and D as functions of k a re  shown in Fig. 1. By 
means  of these curves ,  on the bas is  of the specif ied 
Blot number  (k = 1/Bi),  we can find the values of thc 
p a r a m e t e r s  c and D, and then, using the above-der ived  
fo rmulas ,  calculate  both the field dis t r ibut ion and the 
integral  c h a r a c t e r i s t i c s  of the sy s t em (the heat flow 
and the the rmal  res i s tance) .  

*Formula  (34) may  also be used for  the de te rmina -  
tion of the the rma l  r e s i s t ance .  

686 



1 . f !  I 
" o 02 ~ Q6 o# 

3 06 ~'" 

l tQ20" g 4, 6 8 /r 

c \ 1 L --~-  

0' 
o 20 4,0 #0 #0 k 

Fig. 1. Graph for d e t e r m i n -  
ing p a r a m e t e r s  c (dashed 

line) and D (solid curve).  

We would be particularly interested in evaluating 
the level of nonuniformity in the distribution of the 
heat flow over the disk as a function of k. Such an 

evaluation is possible if we employ the formula which 
follows from (12) with consideration of (33): 

6 q =  

oo0,  o) oo(o, o) 
c)z Oz 

OO(l, o)+oo(o, 0) 
dz 0z 

--~+I 

The cu rves  showing the r e l a t ive  nonuni fo rmi ty  of 
heat- f low d i s t r ibu t ion  as a function of k a re  shown in 
Fig. 2. An examina t ion  of these cu rves  shows that 
when k > 3 the d i s t r ibu t ion  of the heat flow can be r e -  
garded as un i form,  with an e r r o r  not exceeding sev -  
e ra l  pe rcen t .  

The accu racy  of this approx imate  solut ion is 
de t e rmined  by the devia t ion of the boundary  condi t ion 
for  r < 1 f rom the specif ied equat ion (1): 

a ( r )  =l--O(r, O) q - k O O ( r '  O) - - ,  rE[0, 1].* (37) 
0z 

Rela t ionship  (37), af ter  subs t i tu t ing  (32) and (33) into 
it, with cons ide ra t ion  of (12), leads to the fo rm u l a  

\...Li_ - 
0 O# 0.8 /2 /.6 2.0 2.~ 2.8 ~2 ,:- 

F i g .  2. R e l a t i v e  n o n u n i f o r m i ~ y  o f  h e a t - f l u x  d i s t r i -  
b u t i o n  on d i s k .  

C(max 

~075 - 

0.050 

Q OZ# - -  

0 Z # b" 8 k 

Fig. 3. Discrepancy between exact and approximate 

boundary conditions at r < I. 

(r) = D [ I 1 1 2 - -  c 2 - -  r 2 - ~ - - ~  + -  arcsin + 
L C 2 _ _  F 2 

+ , 

\ c ~- ) 

Calculation of the ouantity c~ (r) showed that for any 
k E [0, co) it does not exceed 0.12 (for k ~ i) and that it 

is distributed nonuniformly along the disk radius. The 

curve showing the change in the absolute magnitude of 

the maximum values of ~(r) as a function of k is shown 

in Fig. 3. Bearing in mind that c~(r) reaches its maxi- 

mum values over a relatively small interval of varia- 

tion in the radius, we can maintain that the error in 

the derived approximate solution for any k does not 
exceed several percent of the maximum value of the 
function at the boundary. 

In conclusion, it should be noted that the above- 
cited result can also be used for similar analogous 
problems from potential theory, and in particular in 

the calculation of the electric field of linearpolariza- 
tion electrodes. 

NOTATION 

0 is the temperature; Q is the heat-flux; 6 q is the 

relative nonuniformity of heat-flux distribution; Bi is 

the Blot nun~ber; A, B, f, ft, and (p are the function 
symbols; c~ is the discrepancy of boundary conditions; 

r, and z, are the cylindrical coordinates; p and t are 

the integration variables; I is the parameter of vari- 

able separation; c and D are the parameters; J0 and 

Jt are the Bessel functions of the first kind, of zero 
and first order, respectively; K, E, and II are the 

total elliptic integrals of the first, second, and third 

kinds, respectively. 
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