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We consider the mixed axisymmetric problem having boundary condi-
tions of the 11I~rd kind which are specified at the surface of a disk. By
means of a special method we find the approximate solution in analyt-
ical form and we evaluate its accuracy.

Let us consider the half-space z >0, on portions of
whose boundary—limited by a circle of unit radius—the
conditions of convective heat transfer are satisfied,
with constant temperature maintained over the remain-
ing portions of the boundary plane. In the case of a
homogeneous and isotropic medium, the determination
of the temperature distribution in the half-space, as
is well known, reduces to finding the harmonic func-
tion #(r, z) for boundary conditions of the form*

0 —4F& a—e =] when 2 =0, r<1v (1)

dz
6 =0 when z=0, r>1, (2)

where k = const > 0.

In a number of papers (for example, [1—-3]) this
kind of problem is reduced to the solution of integral
or integrodifferential equations. However, using the
results obtained in these papers, we can find the solu-
tion for the problem only in numerical terms, which
frequently limits the possibilities of its interpretation
to a considerable extent. Let us therefore consider an
approximate method of solving the stated problem;
with this method we will be able to derive an analytical
expression for the solution, **

Let us present the sought function 6(r, z) in the form
of the sum of two functions

6=6"+9"
for z = 0 satisfying the following boundary conditions:
e/ —_ {Dr f<C, (3)
01 r>c, (4)
" [—D, l1<r<q,
o =f() = i <r< (5)
0, r>c¢, (6)
ae’
=0, r<i, (7
0z

where D and ¢ are parameters.

It is easy to see that boundary condition (2) is sat~
isfied identically for any values of the parameters D
and ¢. However, as regards boundary condition (1),
we require that this condition be satisfied exactly, at
least at two points: r =0 and r =1, i.e., we deter-
mine the parameters D and ¢ from the simultaneous
solution of the following two equations:

8 (0, 0)_k‘M:1_D, (8)
0z
: 9
o1, 0 —x L0y p ®
0z

The problem of finding the functions ' and 4" in-
volves no basic difficulties. The solution of the first
of these is known in this case (see, for example, [5]}
and is given by the formula

& oz [CHH 2 my)+
D Ay 2+ (r+o* latr 2 y
+a+c I (3, na, V)] , (10)
a—r 2
where
Py 2"
a=—1 Z 'T’rv ly = — ]
atr
2r o 4cr
Ny = , Vs —
a—r (r+c2+2°

The following special expressions are derived from
the general formula (10):

6, = D (1—-——————22:_ = ). (11)
r
. E{—
08", __20 - ( c ) (12)
9z |e=0 ne (r z ?
r<e 1— __.)
c
' dn
a8 _ 2D LAY r
9z =0 mr K(r\ B

2
r>c , — (-C_)
r
The solution for the problem of finding 9" will be
sought in the form

(2= [ A@ e Jy(hr)dh. (14)
1]

Substitution of (14) into boundary conditions (5)—(7)
leads to the following system of integral equations:

T?»A(}»)Jo(kr)dk=0, r<l, (15)
5
SA(A)Jo(kr)dsz(r), r>1. (16)

1]

We will present the function f(r) in the form of the
Hankel integral, assuming that f(r) = 0 when r < 1:

*In the formulation and solution of the problem, for
the sake of generality, we will use dimensionless
quantities.

**An approximate solution for an analogous prob-
lem with reverse specification of the boundary condi-
tions has been derived in [4].
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f0 = § AT® Joan) di, an ~ g LEEZ ]
§ T gz" =1 /| (29)
where / 2
_ © 9" o = D (—1— aresin _Q_tc_:i _._1‘) . (30)
Fw = | rlsanfo) dr. (18) = P EERO
0
Recalling (5) and (6), we have From formulas (11), (12), (29), and (30) we have
¢ the expressions for the temperature and its normal
F&)=—D X lo(hr)dr = 2 14,0) — el (01 19) derivative:
1
80, 2)= 2D [arcsin (—l——)
N c
With the aid of (17) and (19), it is not difficult to s
bring system (15)—(16) to the form — 2 arctg X +2 ] . (31)
- ) 422 zy ¢t —1
[ AB@ LGNl =H(), r<l, (20)
0
1 1 R (32)
° 6(, O =D | — + — arcsin ———r 1},
S' B\ Jo(ArydA =0, r>1, (21) 7 Ol ( 2 + n E—r? )
) | /
where 08(r, 0)) _ 06°(r, 0) [see (12)]. (33)
) ) 0z r<l 0z r<i<e
B@)= A(MA)—DJ,(x) —cJ: (A )], (22)
fi)=D ‘S' Mo cdi(he)— H (M dh. (9 Proceeding from (33) and (12), for the over-all heat
§ flow of the system we have
The solution of system (20)—(21) is known [3] and is ! \ r
given by the formula a8(r, 0) 4D rE (T)
| =—2n§r———’——dr=-—— — L dr=
B() = | () sinrrde, (24) ; 0z ¢ 1_(_3)
0
where 1 1 "
, —4Dc [K (—) —E (—-)] (34)
i1 vEp? All of the above-derived formulas contain the pre-
¢ viously unknown parameters D and ¢ which we deter-
Having substituted (238) into (25), having altered the mine—proceeding from the system of equations (8)—(9)
sequence of integration, and using the familiar integral —Dby substituting (12) and (80) into that system when
expressions of the Bessel functions [6], we obtain r =0 and r = 1. By means of appropriate transforma-
oDt 1 1 (26) tions we derive the relationships which associate these
Q) = — — — | . ith th ified . .
n \yo—P2 yl-=28 parameters with the specified quantity k:
Using the integral representation of the function ( 1 ) 1 1 . 2—¢*
. ac|{l——][— -+ — arcsin
Ji(A), by means of (22), (24), and (26) we find the solu- P y ¢ 2 n c (35)
tion for the system of paired integral equations (15)— - 9F (__l_ e ‘l— 1 ’
(186): 1 . C ( c2
d P : / 2\ ~1
apy =22 ( tsinrtd _ prog @D Do (L2 1 oresin 2=° ) . (6
n y c—1¢ 2 c ] &
1]
It is not difficult to establish that
limk =0, lmD =1,
thus simultaneously finding the solutionto the problem 1 o '
of determining the function 8" lim k= o0, limD =0.
e”(r, Z) = o0 -
1 ® (28) Thus, the derived approximate solution is valid for
2D tdf . . . € 10, «)
el e exp (__)\12) Jo (A r) sinAfdi— any value of k [ s .
R Py Vet p The curves showing the variation in the parameters
© ¢ and D as functions of k are shown in Fig. 1. By
—¢cD s exp(— Az) Jo(hr)J1{(Ac) dA. means of these curves, on the basis of the specified
b Biot number (k = 1/Bi), we can find the values of the
parameters ¢ and D, and then, using the above-derived
Simple transformations and integration yields the formulas, calculate both the field distribution and the
formula for the function 6" at both the boundary and the integral characteristics of the system (the heat flow
axig of symmetry of the system: and the thermal resistance).
0,mo =D [ Z —1+ 2 (arcsin (_1_> _ *Formula (34) may also be used for the determina~
241 T c tion of the thermal resistance.
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We would be particularly interested in evaluating
the level of nonuniformity in the distribution of the
heat flow over the disk as a function of k. Such an
evaluation is possible if we employ the formula which
follows from (12) with consideration of (33):

36(1, 0) _96(0, 0)
5q = 0z 0z _
9= e, 0 3600 ~

0z 0z

The curves showing the relative nonuniformity of
heat-flow distribution as a function of k are shown in
Fig. 2. An examination of these curves shows that
when k > 3 the distribution of the heat flow can be re-
garded as uniform, with an error not exceeding sev-
eral percent,

The accuracy of this approximate solution is
determined by the deviation of the boundary condition
for r <1 from the specified equation (1):

a(r) =1—6¢, 0}-|~ka—97(32r—’ﬁ, refo, 1. (87

Relationship (37), after substituting (32) and (33) into
it, with consideration of (12), leads to the formula
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Fig. 2. Relative nonuniformity of heat-flux distri-
bution on disk.
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Fig. 3. Discrepancy between exact and approximate
boundary conditions at r < 1.
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Galculation of the quantity o (r) showed that for any
k € [0, ) it does not exceed 0.12 (for k ~ 1) and that it
is distributed nonuniformly along the disk radius. The
curve showing the change in the absolute magnitude of
the maximum values of a(r) as a function of k is shown
in Fig. 3. Bearing in mind that o(r) reaches its maxi-
mum values over a relatively small interval of varia—
tion in the radius, we can maintain that the error in
the derived approximate solution for any k does not
exceed several percent of the maximum value of the
function at the boundary.

In conclusion, it should be noted that the above-~
cited result can also be used for similar analogous
problems from potential theory, and in particular in
the calculation of the electric field of linearpolariza-
tion electrodes.

NOTATION

8 is the temperature; Q is the heat-flux; dq is the
relative nonuniformity of heat-flux distribution; Bi is
the Biot number; A, B, f, fi, and ¢ are the function
symbols; « is the discrepancy of boundary conditions;
r, and z, are the cylindrical coordinates; p and t are
the integration variables; A is the parameter of vari-
able separation; c and D are the parameters; Jy and
J; are the Bessel functions of the first kind, of zero
and first order, respectively; K, E, and II are the
total elliptic integrals of the first, second, and third
kinds, respectively.
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